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Note 

Stability of Finite Difference Representations 
of Partial Differential Equations-A Two-Step Process 

Two classical methods are currently available for the determination of the 
numerical stability of finite difference representations of partial differential 
equations. These are the Fourier and the Matrix methods [l]. These methods 
require one to represent all of the partial derivatives as finite differences before they 
can be applied. Furthermore, if the result is negative (an unstable case), little infor- 
mation is obtained as to the cause of the instability. 

The method proposed in this paper is identical to the matrix method, except that 
the procedure is divided into two sequential steps. The additional information 
obtained after the first step can help identify the cause of any instability found. 

The first step requires that finite difference representations of the partial 
derivatives, with respect to all but one of the independent variables, be constructed. 
This results in a set of ordinary differential equations. The stability of this set of 
ordinary differential equations can then be determined via several methods, 
typically by linearization about equilibrium points. 

The second step consists of representing the remaining derivatives as finite dif- 
ferences to obtain a set of algebraic equations. The stability of this finite difference 
approximation can be easily evaluated via well-known methods for ordinary dif- 
ferential equations [2]. 

Since the method involves two independent steps, accuracy and stability of the 
many possible approximations for the derivatives with respect to the remaining 
independent variable can be quickly evaluated. The first step need not be repeated. 
Furthermore, if there are more than two independent variables, the method can be 
repeated so as to isolate the finite difference approximations with respect to each 
variable. This may help determine which finite difference approximations con- 
tributed to any numerical instability. 

The proposed method is best applied to mathematical models of physical systems 
that exhibit a physical, instability, for it allows one to more easily distinguish 
between physical and numerical instabilities. This is done via the additional infor- 
mation that is obtained from the first step and is discussed later in this paper. 

It is easy to demonstrate the equivalence of the two-step process to the classical 
one-step procedure of the matrix method. First, consider a general partial differen- 
tial equation. If one chooses finite difference approximations for the partial 
derivatives with respect to all the independent variables, save one, an ordinary dif- 
ferential equation set results, 

ti = f(u). (1) 
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The time variable has been assumed to be the remaining independent varia 
here for ease of physical interpretation. The other independent variables vvill 
assumed to represent spatial locations. If the time derivatives are not ali of first 
order, this form can still be obtained by introducing additional state variables. 

In general, Eq. (1) can be linearized to test the stabihty of the ordinary di 
tial equation set about equilibrium points, 

ti=Au. 0) 

The stability of the above equation set can be determined by examining the 
eigenvalues, ,I, of A, obtained from 

If all the eigenvalues have negative real parts, the ordinary differential equation 
set is stable (at least in the region of the equilibrium point, or globally if Eq. (I ) is 
linear). This completes step one of the proposed method. 

The second, and final, step involves choosing a finite difference method for t 
derivatives with respect to time. Several implicit and explicit methods are available, 
and their stability characteristics can all be expressed based on the eige~v~l~es 
obtained from Eq. (3 ). 

A general ordinary differential equation multistep method will be considere 
for the finite difference approximations of the time derivatives, 

U n+l=j~oUjU~-j+hj&l PiAu+j. (41 

In Eq. (4) the subscripts represent the step (or time plane) in the rn~~t~ste~ 
integration, A is defined in Eq. (2), and h is the time-step size. The terms aj an 
are coefficients obtained from a particular multistep method, and the value 
represents the number of steps in the multistep method. 

Ht has been shown [2] that for absolute stability of the multistep met 
roots of the following polynomial should be less than unity in magnitude for all 
eigenvalues, ii, of the matrix A, 

where the superscripts represent integer powers. 
Next, the standard stability calculation for the classical matrix method is briefly 

presented for a comparison of the results. This requires finite di 
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approximations of all partials, including those with respect to time, be constructed 
in the beginning. Then if the eigenvalues of the matrix S in the following equation 
are less than unity in magnitude, the numerical representation is stable; 

where 

From Eqs. (2), (4), and (6), the matrix S can be represented in partitioned form 

s= 

B(a,I+B,hA) B(a,I+B,hA) . . B(a,I -t &&A) 
I 0 
0 I 
0 0 . . . 

I 0 0 
0 I 0 

where B=(I-p-,hA)-‘. 
The eigenvalues of S can be determined from consideration of the form that the 

eigenvectors must take, 

co v 
Cl v 

Ii I 

c2 v 3 

CP v 

where ck ~ r = PC, and ,u is an eigenvalue of the matrix S and v is a yet to be deter- 
mined vector. 

Setting cP = 1 for scaling results in 

c,=/Pk. (7) 

The final partitioned matrix equation (top row of Eq. (6)) can now be written as 
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Examination of Eq. (8) reveals that the vector v must be an eigenvector of the 
so we can replace Av by &v, which yields 

(9) 

This is identical to Eq. (5), which demonstrates the equivalence of the proposed 
two-step metbod to the classical one-step method. Recall that the deriv 
both Eq. (5) and Eq. (9) require that the roots be less than unity in magnitu 
note that one obtains (p + 1) eigenvalues of the matrix S for every eigenva 
matrix A. This demonstrates another advantage of the two-step a 
matrix method. The largest matrix that needs to be analyzed is A, 
than the matrix S. 

The advantages of the two-step application of the matrix method are many. The 
additional information obtained from the first step can be quite helpful in choosing 
a proper numerical method for a particular problem. First, consider a case whe 
the eigenvalues from Eq. (3) all have negative real parts. This would indicate f 
the ordinary differential equation set is stable and would be the proper res 
known that the physical system is also stable. Each choice of a finite 
approximation for the partial derivatives with respect to the time variabI 
be easily evaluated for its effect on numerical stability. 

The second, and more interesting, case is when some of t e eigenvalues from 
) have positive real parts. Growth rates and frequencies of the instabil 
ermined by examining the real and imaginary parts of the associate 
. If the physical system is subject to an instability, the growth rates 

quencies can be compared to experimental results to determine if the 
ficient. Even if no experimental stability results are available, it is ofte 
distinguish between real and numerical instabilities upon examination o 
values and their response to simple modeling changes. Numerical ~nst~bi~~t~es 
usually can be identified by the following properties: 

a, typically very large growth rates and frequencies, 
D sensitivity of eigenvalues to node sizes, 
* insensitivity of eigenvalues to physical damping in the model. 

Examination of the corresponding system eigenvectors may also yield some 
insight into the cause of the instabilities. Of course, it is desired to eliminate t 
numerical instabilities while retaining the physical ones. The proposed two-step 
method allows one to easily evaluate the relative stabilities of the different mo 
the indication is that the physical instability will grow much faster than the 
numerical one, it is not strictly required to eliminate the numerical instability. 

All of these insights into instability are obtained from examination of the first 
step of the proposed two-step method. The eigenvalues obtained from the ciassi 
one-step matrix method do not permit a similar ease of physical interpretation a 



266 RONALD C. DYKHUIZEN 

thercfore, arc much less useful in determining relative stabilities, frequencies, growth 
rates, and causes of instabilities. 

The two-step method was succesfully applied by the author and colleagues in 
analyzing the numerical and physical instabilities of boiling flow systems. The 
physical instability results have been reported elsewhere [3]. In this problem, it was 
essential to be able to distinguish bctwcen physical instabilities and numerical ones 
to allow elimination of the latter. The eigenvalucs obtained from Eq. (3) step one, 
allowed this. The Appendix shows a very simple application of the proposed 
method. 

COYCLUDING REMARKS 

A two-step method for determination of the stability of linite difference 
approximations to partial differential equations is introduced. The method yields a 
necessary and sufficient condition for absolute stability. It offers an advantage over 
the classical matrix method in that it can isolate partial derivatives with respect to 
one independent variable at a time. Intermediate answers can then help pinpoint 
the cause of any numerical instability. Howcvcr, its greatest advantage is that it 
allows easier distinction between numerical and physical instabilities. Furthermore, 
comparison of their relative stabilities is made possible. 

These advantages are all derived from the fact that the eigenvalues obtained from 
the first step can be used not only as a test for stability but as an indication of the 
actual time response of the model. 

APPENDIX: SIMPLE EXAMPLE APPI.ICAIIOK 

Consider the following partial differential equations which describe the flow of a 
compressible fluid in one dimension, 

?p ?(pu) -= -- 
c?t c:z 

d(pu) ZP q/M*) -= 
dt dz c:‘r 

-fpu’. 

(Al) 

(~42) 

A constitutive equation is also required to dcscribc the density (p) in terms of the 
pressure (P), 

p = p,, + h( P - 1’“). (A3) 

The equations will be represented in finite difference form using a grid with the 
pressure defined on the cell boundaries and the velocity (u) defined as cell averages. 
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The donor cell method will be used to define the convected quantities. This yields 
the finite difference equations (assuming u positive velocity), 

@k Pk-l”k-l-~kUk 
-T-= ot AZ 

d(pk”k) p,-p,+~kd-,-~ku: 
---=--- 

at AZ AZ -A?,4 

and the following constitutive relation 

Pk = PO + b(Pk - pO). (Ahi) 

One still needs to specify the cell pressure (Pk) in terms of the ceil inlet and cell 
exit pressures. Two simple schemes are immediately evident, 

Case I P,=P, (A71 

Case II P, = Pi. 

A single cell problem will be considered here, since it has been found in the 
course of this work that most numerical instabilities (that occur due to irn~ro~e~ 
spatial finite differences) are evident no matter the number of cells in the grid. All 
variables in Eqs. (A4), (A5), other than pk, uk, and P,, will be treated as boundary 
conditions, and not state variables. 

First, the equations are linearized and put into the form (the ‘0’ that is included 
in some of the subscripts indicates the state about which the linearization was per- 
formed ), 

where 

M=iitk’ ,“,,1 
Nzl -U/d -PkJ 

AZ f 1 - bu;,( 1 + fdz) - 2ukopko( 1 +fAz) 

In the above description of the matrix N, one term offers a choice in the sign. T 
top sign applies to Case I, and the bottom sign applies to Case II. In more com- 
plicated problems, the linearization should be done numerically. 

The eigenvalues of interest are those of M-IN (which is the same as matrix 
the main body of this paper). These eigenvalues determine the stability of the 
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spatial finite differences and constitute the output of step one. The eigenvalues were 
found analytically to be 

A. = - u( 1 +fdz) * &‘( 1 +fdz)2 - 22fdz f l/b. 

Note that if the term -u2fdz -t l/b is greater than zero, then one of the eigen- 
values will be positive. This is not only possible but likely for Case I where the top 
sign applies. 

This means that in the limit of very small time steps, any proper finite difference 
scheme of the time variable will likely yield an unstable result for Case I. This goes 
against physical understanding of the process that is being modeled, so the analysis 
would normally stop here after the first step to try to correct the problem. 

The spatial finite differences for Case II are shown to be always stable. This is 
what is expected for a one-dimensional flow with a friction term in the momentum 
equation. From these eigenvalues, one can select a finite difference method for the 
time variable and a maximum allowable time step to guarantee stability of the 
numerical model. 

It should be noted here that Case I is not causal [4]. A cell should not output 
both the pressure and velocity at the same location. (Note that in the donor cell 
scheme, the exit velocity is the same as the cell average velocity.) Liles and Reed 
[S] also found that the density of a cell should be based on the upstream pressure 
for stability; however, they did not identify any reason for this fact. An interesting 
topic for investigation might be the relationship between causality and numerical 
instability. 
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